Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

6-tert-Butylnaphthalene-2,3-dicarbonitrile

Yin-Huai Li

Jingmen Technical College, Jingmen, Hubei, 448000, People's Republic of China

Correspondence e-mail: liyinhuai@hotmail.com

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(\text{C-C}) = 0.002 \text{ Å}$ R factor = 0.036 wR factor = 0.117Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Molecules of the title compound, $C_{16}H_{14}N_2$, are located on a crystallographic mirror plane with one half-molecule in the asymmetric unit. The molecules are held together in the crystal structure by π - π stacking interactions.

Received 22 November 2006 Accepted 23 November 2006

Comment

For many years, phthalocyanine derivatives have attracted attention because of their high thermal stability as well as their wide applications in many fields (Hanack *et al.*, 1994). Recently, there has been considerable interest in the synthesis and elucidation of the properties of structurally modified phthalocyanines.

Molecules of the title compound are located on a crystal-lographic mirror plane. The C-N bond lengths within each CN group are almost equal [1.138 (2) and 1.133 (2) Å]. The molecules in the crystal structure are held together by π - π stacking interactions. The closest centroid-centroid distance of two benzene rings is 3.821 Å $[Cg1\cdots Cg1^{i}]$ and $Cg1\cdots Cg1^{i}$ where Cg1 is the centroid of the C3-C8 ring; symmetry codes (i) 1-x, 1-y, 1-z; (ii) 1-x, -y, 1-z].

Experimental

The title compound was synthesized according to a literature method (Chabach, *et al.*, 1995). Crystals were obtained by evaporation of an ethanol solution. Analysis calculated (%): C 82.02, N 11.96, H 6.02; found(%): C 82.00, N 12.01, H 6.07.

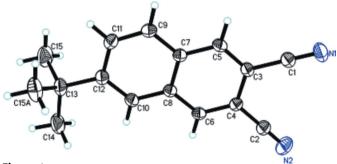


Figure 1 The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) $x, \frac{1}{2} - y, z$.]

doi:10.1107/\$1600536806050525

© 2006 International Union of Crystallography All rights reserved

organic papers

Crystal data

 $\begin{array}{lll} C_{16}H_{14}N_2 & Z=4 \\ M_r=234.29 & D_x=1.192 \ \mathrm{Mg \ m^{-3}} \\ \mathrm{Orthorhombic}, Pnma & \mathrm{Mo} \ K\alpha \ \mathrm{radiation} \\ a=11.1480 \ (2) \ \mathring{\mathrm{A}} & \mu=0.07 \ \mathrm{mm^{-1}} \\ b=7.0072 \ (2) \ \mathring{\mathrm{A}} & T=298 \ (2) \ \mathrm{K} \\ c=16.7188 \ (4) \ \mathring{\mathrm{A}} & \mathrm{Block, \ colourless} \\ V=1306.01 \ (5) \ \mathring{\mathrm{A}}^3 & 0.25 \times 0.20 \times 0.15 \ \mathrm{mm} \end{array}$

Data collection

 $\begin{array}{lll} \mbox{Bruker SMART CCD diffract-} & 10458 \mbox{ measured reflections} \\ \mbox{ometer} & 1399 \mbox{ independent reflections} \\ \mbox{oscans} & 1062 \mbox{ reflections with } I > 2\sigma(I) \\ \mbox{Absorption correction: multi-scan} & R_{\rm int} = 0.040 \\ \mbox{SADABS (Bruker, 1997)} & \theta_{\rm max} = 26.0^{\circ} \\ \mbox{} & I_{\rm min} = 0.983, \ T_{\rm max} = 0.989 \end{array}$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.117$ S = 1.081399 reflections 108 parameters H-atom parameters constrained
$$\begin{split} w &= 1/[\sigma^2(F_{\rm o}^2) + (0.0615P)^2 \\ &+ 0.1377P] \\ \text{where } P &= (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} &< 0.001 \\ \Delta\rho_{\rm max} &= 0.18 \ {\rm e} \ {\rm \mathring{A}}^{-3} \\ \Delta\rho_{\rm min} &= -0.14 \ {\rm e} \ {\rm \mathring{A}}^{-3} \\ \text{Extinction correction: } \textit{SHELXL} \end{split}$$

Extinction coefficient: 0.008 (2)

H atoms were refined with fixed individual displacement parameters $[U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})~1.5U_{\rm eq}(C_{\rm methyl})]$ using a riding model with C-H = 0.93 (aromatic) or 0.96 Å (methyl). The C15 methyl group was allowed to rotate but not to tip.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXL97*.

We gratefully acknowledge the support of Jingmen Technical College.

References

Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Chabach, D., Tahiri, M., De Cian, A., Fischer, J., Weiss, R. & El Malouli Bibout, M. (1995). *J. Am. Chem. Soc.* **117**, 8548–8556.

Hanack, M. & Lang, M. (1994). Adv. Mater. 6, 819–833.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.